Invariants of differential equations defined by vector fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41025207
(http://iopscience.iop.org/1751-8121/41/2/025207)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.148
The article was downloaded on 03/06/2010 at 06:48

Please note that terms and conditions apply.

Invariants of differential equations defined by vector fields

J C Ndogmo
P O Box 2446, Bellville 7535, South Africa
E-mail: ndogmoj@yahoo.com

Received 24 August 2007, in final form 8 November 2007
Published 19 December 2007
Online at stacks.iop.org/JPhysA/41/025207

Abstract

We determine the most general group of equivalence transformations for a family of differential equations defined by an arbitrary vector field on a manifold. We also find all invariants and differential invariants for this group up to the second order. A result on the characterization of classes of these equations by the invariant functions is also given.

PACS numbers: 02.20.Sv, 02.40.Vh
Mathematics Subject Classification: 17B66, 58D19

1. Introduction

In Lie theory, the invariance of functions and other objects under a transformation group G acting on an n-dimensional manifold V is usually characterized by the vanishing of related functions under some vector fields generating the group action, and this vanishing is represented by a system of partial differential equations in which each equation has the form

$$
\begin{equation*}
\sum_{i=1}^{n} A_{i}(X) \partial_{x^{i}} F(X)=0 \tag{1.1}
\end{equation*}
$$

where $X=\left(x^{1}, \ldots, x^{n}\right)$ is a local coordinate system on V, the $A_{i}(X)$'s are the coefficients of the vector field and F is the unknown function. The importance of linear partial differential equations of the form (1.1) usually referred to as determining equations for the invariant objects cannot be overstated. Indeed, they characterize invariant equations as well as their invariant solutions, and they have a similar importance in the study of Lie algebras and in representation theory. In physics, invariant operators of dynamical groups characterize specific properties of physical systems and provide mass formulae and energy spectra [1,2]. Invariants of physical symmetry groups also provide quantum numbers useful in the classification of elementary particles [3]. It would therefore be desirable to consider the group of equivalence transformations, in the sense introduced by Ovsyannikov [10], for
equations of the form (1.1) and to determine all functions invariant under this group. Such functions are simply called invariants of the differential equation (1.1).

Methods for the determination of invariants of linear and nonlinear equations built on an idea suggested by Lie himself [5] can be found in [6, 10, 11]. These methods are based on the fact that the invariant functions for the infinite group of equivalence transformations of a given system of equations are precisely what is termed the invariants of the system of equations. That is, these functions are invariant under the group of transformations that confine all equations to a prescribed family by preserving their form, except for their coefficients. In the case for example of linear homogeneous differential equations such as that in (1.1), the equivalence transformations will preserve both the linearity and homogeneity of the equation, as well as its order. The method for finding these invariants is an infinitesimal one and it also yields singular invariant equations. It has been used to complete the problem of determination of the Laplace invariants in [7, 9], and in [8] to characterize linearizable second-order ODE's.

In the present paper we find the most general group G of equivalence transformations leaving unchanged, except for its arbitrary coefficients A_{i}, an equation of the form

$$
\begin{equation*}
\sum_{i=1}^{n} A_{i}(X) \partial_{x^{i}} U=0 \tag{1.2}
\end{equation*}
$$

where $\left(x^{1}, \ldots, x^{n}, U\right) \in \mathbb{R}^{n} \times \mathbb{R}=M$, and where we assume that a fixed number of the coefficients A_{i} for $i=1, \ldots, n$, are nonzero. We then find the invariants and differential invariants up to the second order for this group and for an arbitrary number n of independent variables in the equation. We first treat with more details the cases $n=2,3$ before giving some generalizations of the results. Next, by investigating the regularity of the action of G on M, we show how the invariants found can be used to characterize families of equations of the form (1.2).

2. The group of equivalence transformations

If the number of nonzero coefficients $A_{i}(X)$ in equation (1.2) is less than 2 , then this equation reduces to either the trivial equation or to $\partial_{x^{1}} U=0$, assuming that $A_{1}(X)$ is the only nonzero coefficient. Thus, we do not have a family of equations in such a case, and we shall therefore assume that the number of nonzero coefficients in (1.2) is at least 2. This implies in particular that $n \geqslant 2$. Owing to the linearity of equation (1.2), any invertible change of the dependent variable U and the independent variables $\left(x^{1}, \ldots, x^{n}\right)=X$ that preserves the form of the equation should be of the form

$$
\begin{align*}
& X=\psi(Y) \tag{2.1a}\\
& U=H(Y) V(Y), \quad H(Y) \neq 0, \tag{2.1b}
\end{align*}
$$

where $Y=\left(y^{1}, \ldots, y^{n}\right)$ is the new set of independent variables, V is the new dependent variable and H is an arbitrary function.

Theorem 1. The most general group G of equivalence transformations of equation (1.2) consists of the set of all invertible changes of variables of the form

$$
\begin{align*}
& x^{i}=\psi^{i}(Y) \equiv \psi^{i}\left(y^{i}\right), \quad \text { for } \quad i=1, \ldots, n \tag{2.2a}\\
& U=V \tag{2.2b}
\end{align*}
$$

That is, each $\psi^{i}(Y)$ is a function of the single variable y^{i}, and G does not involve a change of the dependent variable.

Proof. Under the general change of variables (2.1a), and by setting $\phi=\psi^{-1}$, equation (1.2) takes the form

$$
\begin{equation*}
\sum_{j=1}^{n} B_{j}(Y) \partial_{y^{j}}(U)=0 \tag{2.3a}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{j}(Y)=\sum_{i=1}^{n} A_{i}(\psi(Y)) \frac{\partial \phi^{j}}{\partial x^{i}}(\psi(Y))=\sum_{i=1}^{n} A_{i}(X) \frac{\partial \phi^{j}}{\partial x^{i}}(X) \tag{2.3b}
\end{equation*}
$$

Equation (2.3a), together with the expression of U given by $(2.1 b)$ shows that none of the coefficients B_{j} should vanish identically. However, the expression of B_{j} in (2.3b) shows that if $\phi^{j}(X)$ depends on more than one of the variables x^{i}, for $i=1, \ldots, n$ it can be chosen as an invariant of an appropriate vector field, and so that $B_{j}=0$. Hence $\phi^{j}(X) \equiv \phi^{j}\left(x^{q j}\right)$, for some $q j \in\{1, \ldots, n\}$ and because of the invertibility of ϕ, ϕ^{j} must be a nonconstant map and all the variables $x^{q j}$ must be distinct for $j=1, \ldots, n$. This implies, in particular, that $x^{i}=\psi^{i}\left(y^{k i}\right)$ must also be a nonconstant function of a single variable. If we let σ be the permutation that maps the ordered set $\left\{y^{1}, \ldots, y^{n}\right\}$ onto the ordered set $\left\{y^{k 1}, \ldots, y^{k n}\right\}$, then the i th component of $\psi \circ \sigma^{-1}$ depends exactly on y^{i} alone. On account of the arbitrariness of ψ, we may replace ψ by $\psi \circ \sigma^{-1}$, and thus we may always assume that $x^{i}=\psi^{i}\left(y^{i}\right)$, and equivalently $y^{i}=\phi^{i}\left(x^{i}\right)$. This reduces the expression of $B_{j}(Y)$ in $(2.3 b)$ to the form

$$
\begin{equation*}
B_{j}=A_{j}(\psi(Y)) \frac{\partial \phi^{j}\left(x^{j}\right)}{\partial x^{j}}=\frac{A_{j}(\psi(Y))}{\psi^{j}\left(y^{j}\right)} \neq 0, \tag{2.4}
\end{equation*}
$$

where $\psi^{j \prime}=\partial \psi^{j} / \partial y^{j}$. Substituting (2.1b) into (2.3a) and expanding, equation (1.2) takes the form

$$
\begin{equation*}
\sum_{j=1}^{n} H B_{j} \partial_{y^{j}} V+V\left(\sum_{j=1}^{n} B_{j} \partial_{y^{j}} H\right)=0 \tag{2.5}
\end{equation*}
$$

The fact that the coefficient of V appearing in (2.5) must identically vanish and the arbitrariness of the n coefficients A_{j} in the expression of B_{j} in (2.4) show that $\partial_{y^{j}} H(Y)=0$, for all $j=1, \ldots, n$. Thus, $H(Y) \neq 0$ is a constant function and without loss of generality we may assume that $H=1$. This last equality transforms equation (2.5) to the form

$$
\begin{equation*}
\sum_{j=1}^{n} B_{j}(Y) \partial_{y^{j}} V(Y)=0 \tag{2.6}
\end{equation*}
$$

which is of the prescribed form. This completes the proof of the theorem.

Remarks.

(1) It should also be noted that under the general change of variables (2.1), it is always possible, by the well-known result on the rectification of vector fields, to put (1.2) in the form

$$
\partial_{y^{1}}(H V)=0, \quad \text { i.e., } \quad\left(\partial_{y^{1}} H\right) V+H\left(\partial_{y^{1}} V\right)=0
$$

Thus if we allow some of the coefficients A_{i} to vanish, then the only additional condition to be imposed on the change of variables (2.1) would be $\partial_{y^{1}} H=0$, and all equations of the form (1.2) would be equivalent. There are clearly no invariant functions or invariant equations of any order in such a case.
(2) According to theorem 1, the equivalence group of (1.2) does not involve any change of the dependent variable, and this implies that the classification of families of equations of the form (1.2) can be reduced to that of vector fields of the form $\sum_{i=1}^{n} A_{i}(X) \partial_{x^{i}}$ where the number r of nonzero coefficients $A_{i}(X)$ is fixed by the remark in part (1) above, and where $r \geqslant 2$, by an earlier remark.

We now move on to determine the infinitesimal generators of the group G. In the rest of the paper, for any function $f^{i}\left(a^{i}\right)$ of a single variable a^{i}, we shall use the notation $f^{i \prime}=$ $\mathrm{d} f^{i}\left(a^{i}\right) / \mathrm{d} a^{i}$. As already noted, equation (2.2a) implies that $y^{i}=\phi^{i}\left(x^{i}\right)$, for $i=1, \ldots, n$, and this shows that the infinitesimal transformation of (2.2) has the form

$$
\begin{equation*}
y^{i} \approx x^{i}+\epsilon \xi^{i}\left(x^{i}\right), \quad V \approx U \tag{2.7}
\end{equation*}
$$

where the functions ξ^{i} are also arbitrary, due to the arbitrariness of the functions ψ^{i}. The first prolongation of this transformation has the form

$$
\begin{equation*}
\partial_{y^{i}} V \approx \partial_{x^{i}} U+\epsilon\left(-\xi^{i \prime} \partial_{x^{i}} U\right) \tag{2.8}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\partial_{x^{i}} U \approx \partial_{y^{i}} V+\epsilon\left(\xi^{i \prime} \partial_{y^{i}} V\right) \tag{2.9}
\end{equation*}
$$

where ∂_{x} is the differential operator $\partial / \partial x$, for any variable x. A substitution of equation (2.9) into the original equation (1.2) yields the infinitesimal transformation of that equation in the form

$$
\begin{equation*}
\sum_{i=1}^{n}\left(A_{i}+\epsilon A_{i} \xi^{i \prime}\right) \partial_{y^{i}} V=0 \tag{2.10}
\end{equation*}
$$

This shows that the infinitesimal transformation \tilde{A} of the coefficient A_{i} is given by

$$
\tilde{A}_{i} \approx A_{i}+\epsilon A_{i} \xi^{i \prime}
$$

The infinitesimal generators of the equivalence transformation G therefore have the form

$$
\begin{equation*}
\mathcal{V}=\sum_{i=1}^{n} \xi^{i} \partial_{x^{i}}+\sum_{i=1}^{n} A_{i} \xi^{i \prime} \partial_{A_{i}} \tag{2.11}
\end{equation*}
$$

The derivation of equations (2.7)-(2.11) is based on the method described in [6].

3. Zeroth-order invariants

We would like to first recall very briefly certain elementary facts about the invariant functions of a given transformation group. Suppose that the infinitesimal generators of an r-parameters group of transformations G acting on the \mathcal{Q}-dimensional manifold M are of the form

$$
\begin{equation*}
\mathcal{V}_{k}=\sum_{j=1}^{n} \xi^{k j} \partial_{x^{j}}, \quad \text { for } \quad k=1, \ldots, r \tag{3.1}
\end{equation*}
$$

The invariant functions and invariant equations of G are determined by

$$
\begin{align*}
& \mathcal{V}_{k}(F)=0, \tag{3.2a}\\
& \left.\mathcal{V}_{k}(F)\right|_{F=0}=0, \tag{3.2b}
\end{align*}
$$

respectively, for $k=1, \ldots, r$. The number of fundamental invariants of G does not exceed $\mathcal{Q}-\tau$, where τ is the rank of the matrix $\left(\xi^{k j}\right)_{k, j}$ of coefficients of the r operators \mathcal{V}_{k}. Each of these functions naturally gives rise to an invariant equation. Invariant equations $F=0$, where
F is not an invariant function, and obtained by imposing the additional condition $\tau<\mathcal{Q}$ on Equation (3.2b) are often referred to as singular invariant equations. Using a Lie linearization test, such equations were recently shown [8] to characterize all linearizable second-order ordinary differential equations.

When some of the independent variables x^{j} in the expression of \mathcal{V}_{k} can be taken as dependent variables for other objects such as a differential equation, the generators \mathcal{V}_{k} can be extended to involve higher order derivatives of the dependent variables. If \mathcal{V} is a given infinitesimal generator of G, then we shall often use the same symbol \mathcal{V} to represent both \mathcal{V} and its m th prolongation $\mathcal{V}^{(m)}$. However, the m th jet space of M will be denoted as usual by $M^{(m)}$.

Since the general change of variables (2.2) is merely a change of the independent variables and does not involve the dependent variable U, this variable is trivially an invariant for G. We shall therefore ignore this variable in our search for the invariant functions of G whose general form for the zeroth-order operator (2.11) is $F\left(x^{1}, \ldots, x^{n}, A_{1}, \ldots, A_{n}\right)$.

Theorem 2. The group of equivalence transformations G of (1.2) has neither invariant functions nor invariant equations.

Proof. Rewriting the generic generator \mathcal{V} in (2.11) as a linear combination of the arbitrary functions ξ^{i} and their derivatives gives

$$
\mathcal{V}=\sum_{i=1}^{n} \xi^{i}\left(\partial_{x^{i}}\right)+\sum_{i=1}^{n} \xi^{i \prime}\left(A_{i} \partial_{A_{i}}\right)
$$

and this proves the first part of the theorem at once, on account of the arbitrariness of the functions ξ^{i}. To show that G has no invariant equation, we use an elementary technique similar to that used in [8]. Suppose that $F\left(x^{1}, \ldots, x^{n}, A_{1}, \ldots, A_{n}\right)=0$ is a nontrivial invariant equation for G, and so it explicitly involves at least one of the variables, say x^{1}, in the set $\left\{x^{1}, \ldots, x^{n}, A_{1}, \ldots, A_{n}\right\}$. Then solving the equation for x^{1} reduces it to the equivalent form $x^{1}=K\left(x^{2}, \ldots, x^{n}, A_{1}, \ldots, A_{n}\right)$. The arbitrariness of the functions ξ^{i} and their derivatives implies again that we must have in particular

$$
\left.\partial_{x^{1}}\left(x^{1}-K\right)\right|_{x^{1}=K}=0 .
$$

But this last condition cannot hold because $\partial_{x^{1}}\left(x^{1}-K\right)=1$, and this completes the proof of the theorem.

4. First-order differential invariants

By computing the first prolongation $\mathcal{V}^{(1)}$ of the infinitesimal generator (2.11) of G for small values of n up to five, a clear pattern shows up that suggests the form of the general expression of $\mathcal{V}^{(1)}$ for n arbitrary. One can then easily show by induction on n that $\mathcal{V}^{(1)}$ has the form

$$
\begin{equation*}
\mathcal{V}^{(1)}=\mathcal{V}+\sum_{i=1}^{n} A_{i} \xi^{i \prime \prime} \frac{\partial}{\partial A_{i i}}+\sum_{i=1}^{n} \sum_{j \neq i} A_{j i}\left(\xi^{j \prime}-\xi^{i \prime}\right) \frac{\partial}{\partial A_{j i}} \tag{4.1a}
\end{equation*}
$$

where we have used the notation

$$
\begin{equation*}
A_{i j}=\frac{\partial A_{i}}{\partial x^{j}}, \quad \text { for } \quad i, j \in\{1, \ldots, n\} \tag{4.1b}
\end{equation*}
$$

In terms of the linear combination of the arbitrary functions ξ^{i} and their derivatives, this expression takes the form
$\mathcal{V}^{(1)}=\sum_{i=1}^{n} \xi^{i} \frac{\partial}{\partial x^{i}}+\sum_{i=1}^{n} A_{i} \xi^{i \prime \prime} \frac{\partial}{\partial A_{i i}}+\sum_{i=1}^{n} \xi^{i \prime}\left[\frac{A_{i} \partial}{\partial A_{i}}+\sum_{j \neq i}\left(A_{i j} \frac{\partial}{\partial A_{i j}}-A_{j i} \frac{\partial}{\partial A_{j i}}\right)\right]$.

Equation (4.2) clearly shows that any first-order differential invariant of G should be independent of all the independent variables x^{i}, as well as the variables $A_{i i}$. This last condition reduces $\mathcal{V}^{(1)}$ to the form

$$
\begin{equation*}
\mathcal{V}^{(1)}=\sum_{i=1}^{n} \xi^{i \prime} \mathcal{V}_{\xi^{\prime \prime}} \tag{4.3a}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{V}_{\xi^{i}}=A_{i} \frac{\partial}{\partial A_{i}}+\sum_{j \neq i}\left(A_{i j} \frac{\partial}{\partial A_{i j}}-A_{j i} \frac{\partial}{\partial A_{j i}}\right) . \tag{4.3b}
\end{equation*}
$$

As we are considering the arbitrary functions A_{i} in (1.2) in their most general form, we may assume that the functions $A_{i j}=\partial_{x^{j}} A_{i}$ do not vanish identically. It then follows from (4.3) that the generators of the first prolongation of G depend on $\mathcal{Q}=n^{2}$ independent variables. If however we assume that exactly p of the functions $A_{i j}$ vanish identically, then this number p is invariant under the action of G and $\mathcal{Q}=n^{2}-p$.

Theorem 3. Consider the n operators $\mathcal{V}_{\xi^{\prime \prime}}$ of (4.3).
(a) The rank of the coefficients matrix \mathcal{M} of the operator $\mathcal{V}_{\xi^{i}}$ is n, which is maximal.
(b) The $\mathcal{V}_{\xi^{i}}$ form an n-dimensional commutative Lie algebra.
(c) The number of fundamental first-order differential invariants of the group G of equivalence transformations of equation (1.2) is $n(n-1)$.

Proof. In any coordinate system of the form $\left\{A_{1}, \ldots, A_{n}, \ldots\right\}$ on the extended jet space on which the first prolongation of G operates, equation (4.3) shows that the first n columns of \mathcal{M} are represented by the matrix $\operatorname{diag}\left\{A_{1}, \ldots, A_{n}\right\}$ which has rank n, owing to the fact that none of the coefficients A_{i} is zero, and this proves part (a) and shows that the n vectors $\mathcal{V}_{\xi^{i \prime}}$ are linearly independent. For part (b), if for any $k \in\{1, \ldots, n\}$ we write

$$
\mathcal{V}_{\xi^{k}}=A_{k} \partial_{A_{k}}+\sum_{q \neq k}\left(A_{k q} \frac{\partial}{\partial A_{k q}}-A_{q k} \frac{\partial}{\partial A_{q k}}\right),
$$

then we readily see that the commutator $\left[\mathcal{V}_{\xi^{\prime \prime}}, \mathcal{V}_{\xi^{k}}\right]$ is a linear combination of the identically vanishing commutators

$$
\begin{array}{lll}
{\left[A_{i j} \partial_{A_{i j}}-A_{j i} \partial_{A_{j i}}, A_{k q} \partial_{A_{k q}}-A_{q k} \partial_{A_{q k}}\right],} & {\left[A_{i} \partial_{A_{i}}, A_{k} \partial_{A_{k}}\right]} \\
{\left[A_{i} \partial_{A_{i}}, A_{k q} \partial_{A_{k q}}-A_{q k} \partial_{A_{q k}}\right],} & {\left[A_{i j} \partial_{A_{i j}}-A_{j i} \partial_{A_{j i}}, A_{k} \partial_{A_{k}}\right] .}
\end{array}
$$

This fact together with part (a) proves (b). Since the number of independent variables involved in the complete system of n operators $\mathcal{V}_{\xi^{\prime \prime}}$ is n^{2}, the number of their functionally independent invariants is precisely $n^{2}-\operatorname{rank}(\mathcal{M})$, which is $n(n-1)$.

The most practical way to find the $n^{2}-n$ first-order differential invariants of G would be to compute these invariants for low dimensions of M, i.e. for $n=2,3$ and then make use of the symmetry inherent in the form of equation (1.2) to find the invariants in the general case.

For $n=2$ and $n=3$ we write equation (1.2) in the form

$$
\begin{equation*}
a U_{x}+b U_{y}=0 \quad \text { and } \quad a U_{x}+b U_{y}+c U_{z}=0 \tag{4.4}
\end{equation*}
$$

respectively. In case $n=2$, the operators $\mathcal{V}_{\xi^{\prime \prime}}$ are given by

$$
\mathcal{V}_{\xi^{\prime \prime}}=a \partial_{a}+a_{y} \partial_{a_{y}}-b_{x} \partial_{b_{x}}, \quad \mathcal{V}_{\xi^{\prime 2}}=b \partial_{b}-a_{y} \partial_{a_{y}}+b_{x} \partial_{b_{x}} .
$$

Solving the system of equations $\mathcal{V}_{\xi^{\prime \prime}}(F)=0$, for $i=1,2$ by the method of characteristics shows that G has a fundamental system of invariants consisting of the two functions

$$
T_{12}=\frac{a_{y} b}{a} \quad \text { and } \quad T_{21}=\frac{b_{x} a}{b}
$$

In case $n=3$, the three operators $\mathcal{V}_{\xi^{\prime \prime}}$ are given by

$$
\begin{aligned}
& \mathcal{V}_{\xi^{\prime \prime}}=a \partial_{a}+\left(a_{y} \partial_{a_{y}}-b_{x} \partial_{b_{x}}\right)+\left(a_{z} \partial_{a_{z}}-c_{x} \partial_{c_{x}}\right), \\
& \mathcal{V}_{\xi^{2}}=b \partial_{b}+\left(b_{x} \partial_{b_{x}}-a_{y} \partial_{a_{y}}\right)+\left(b_{z} \partial_{b_{z}}-c_{y} \partial_{c_{y}}\right), \\
& \mathcal{V}_{\xi^{3}}=c \partial_{c}+\left(c_{x} \partial_{c_{x}}-a_{z} \partial_{a_{z}}\right)+\left(c_{y} \partial_{c_{y}}-b_{z} \partial_{b_{z}}\right)
\end{aligned}
$$

and the corresponding set of six invariants is found to be

$$
\begin{array}{lll}
T_{12}=\frac{a_{y} b}{a}, & T_{21}=\frac{b_{x} a}{b}, & T_{13}=\frac{a_{z} c}{a} \\
T_{31}=\frac{c_{x} a}{c}, & T_{23}=\frac{b_{z} c}{b}, & T_{32}=\frac{c_{y} b}{c}
\end{array}
$$

The form of the invariants found for $n=2,3$ together with part (c) of theorem 3 asserting that the number of invariants in the general case is $n(n-1)$, which is $2\binom{n}{2}$, suggests that all invariants can be found by associating with each subset of two elements of the set of n coefficients of the differential equation a pair of invariants according to a very simple rule.

Theorem 4. The $n(n-1)$ fundamental invariants $T_{i j}$ of the group G of equivalence transformations of equation (1.2) are given by

$$
\begin{equation*}
T_{i j}=\frac{A_{i j} A_{j}}{A_{i}}, \quad \text { for } \quad i \neq j, \quad \text { where } \quad A_{i j}=\frac{\partial A_{i}}{\partial x^{j}} \tag{4.5}
\end{equation*}
$$

and where A_{i} and A_{j} run over the set of coefficients of the equation.
Proof. It is easily verified that the identity $\mathcal{V}_{\xi^{i \prime}}\left(T_{k q}\right)=0$ holds for all $i=1, \ldots, n$ and for all $k \neq q$. Next, the functions $A_{i j}$ for $i, j \in\{1, \ldots, n\}$ are functionally independent by assumption, and each $T_{i j}$ depends on exactly one of them.

Note that if we restrict the action of G to a sub-family of equations of the form (1.2) for which exactly p of the function $A_{i j}$ vanish identically, then the maximal number of functionally independent first-order differential invariants is $n(n-1)-p$.

5. Second-order differential invariants

Similarly to the case of the first prolongation $\mathcal{V}^{(1)}$ given in (4.1a), one can show by induction on n that the second prolongation of the generator (2.11) of G has the form

$$
\begin{align*}
& \mathcal{V}^{(2)}=\mathcal{V}+\sum_{j=1}^{n}\left(A_{j}\right) \xi^{j \prime \prime} \partial_{A_{j j}}+\left(A_{j} \xi^{j \prime \prime}+A_{j j} \xi^{j \prime \prime}-A_{j j j} \xi^{j \prime}\right) \partial_{A_{j j j}}+\sum_{i \neq j} A_{j i}\left(\xi^{j \prime}-\xi^{i \prime}\right) \partial_{A_{j i}} \\
&+2\left(A_{j i} \xi^{j^{\prime \prime}}-A_{j j i} \xi^{i \prime}\right) \partial_{A_{j j i}}+\left[\left(\xi^{j \prime}-2 \xi^{i \prime}\right) A_{j i i}-A_{j i} \xi^{i \prime \prime}\right] \partial_{A_{j i i}} \\
&+2 \sum_{\substack{i, k \neq j \\
i<k}}\left(\xi^{j \prime}-\xi^{i \prime}-\xi^{k \prime}\right) A_{j i k} \partial_{A_{j i k}}, \tag{5.1a}
\end{align*}
$$

where as usual

$$
\begin{equation*}
A_{j i}=\frac{\partial A_{j}}{\partial x^{i}}, \quad A_{j i k}=\frac{\partial A_{j}}{\partial x^{i} \partial x^{k}}, \quad \text { etc. } \tag{5.1b}
\end{equation*}
$$

Rewriting this expression as a linear combination of the arbitrary functions ξ^{i} and their derivatives shows that any invariant function should be independent of the independent variables and of variables of the form $A_{i i i}$ for $i=1, \ldots, n$. This reduces the expression of $\mathcal{V}^{(2)}$ to the form

$$
\begin{equation*}
\mathcal{V}^{(2)}=\sum_{i=1}^{n} \xi^{i \prime} \mathcal{V}_{\xi^{i \prime}}+\xi^{i \prime \prime} \mathcal{V}_{\xi^{i \prime \prime}} \tag{5.2a}
\end{equation*}
$$

where
$\mathcal{V}_{\xi^{\prime \prime}}=A_{i} \partial_{A_{i}}+\sum_{j \neq i}\left(A_{i j} \partial_{A_{i j}}-A_{j i} \partial_{A_{j i}}+A_{i j j} \partial_{A_{i j j}}-2 \sum_{k=1}^{n} A_{j i k} \partial_{A_{j i k}}\right)+2 \sum_{\substack{j, k \neq i \\ j<k}} A_{i j k} \partial_{A_{i j k}}$
$\mathcal{V}_{\xi^{\prime \prime \prime}}=A_{i} \partial_{A_{i i}}+\sum_{j \neq i}\left(2 A_{i j} \partial_{A_{i i j}}-A_{j i} \partial_{A_{j i i}}\right)$.
It readily follows from equations (5.2) that the second-order differential invariants of G depend in general on $n+n\binom{n+2}{2}-2 n$ variables, that is on $n^{2}(3+n) / 2$ variables. This is the dimension of the subspace of the extended jet space $M^{(2)}$ of M on which the second prologation of G acts.

Theorem 5. The set of operators $\left\{\mathcal{V}_{\xi^{i \prime}}\right\}_{i=1}^{n}$ and $\left\{\mathcal{V}_{\xi^{i \prime \prime}}\right\}_{i=1}^{n}$ given in (5.2) each generate an n-dimensional commutative Lie algebra.

Proof. Thanks to the term $A_{i} \partial_{A_{i}}$ appearing in the expression of each generator $\mathcal{V}_{\xi^{i \prime}}$ as the only term involving $\partial_{A_{i}}$, the coefficients matrix of these operators admits a submatrix of the form $\operatorname{diag}\left\{A_{1}, \ldots, A_{n}\right\}$, which is clearly of rank n, showing that $\mathcal{V}_{\xi^{\prime \prime}}$ generate an n-dimensional space. Similarly, as the term $A_{i} \partial_{A_{i i}}$ appears in the same manner in the expression of each generator $\mathcal{V}_{\xi^{i \prime \prime}}$, the set $\left\{\mathcal{V}_{\xi^{\prime \prime \prime}}\right\}_{i=1}^{n}$ also generates an n-dimensional space. For each pair $\{i, k\}$, it is easy to see as in the proof of theorem 3 that each of the commutators $\left[\mathcal{\xi}_{\xi^{\prime \prime}}, \mathcal{V}_{\xi^{k}}\right]$ and $\left[\mathcal{V}_{\xi^{i \prime}}, \mathcal{V}_{\xi^{k \prime \prime}}\right]$ is a linear combination of identically vanishing commutators. This completes the proof of the theorem.
If we denote by $\xi^{i(j)}$ the j th derivative of ξ^{i}, then theorem 5 asserts that for j fixed, the $\mathcal{V}_{\xi^{i(j)}}$'s form a commutative Lie algebra for $j=1,2$. However, the set of all operators $\mathcal{V}_{\xi^{(j)}}$ for $i=1, \ldots, n$ and $j=1,2$ that determine the second-order differential invariants of G does not form a Lie algebra in general when they are considered together, as this easily appears from the low dimensional cases.

Indeed, if for $n=2,3$ we rewrite equation (1.2) as in (4.4), then for $n=2$, we have

$$
\begin{aligned}
& \mathcal{V}_{\xi^{\prime \prime}}=a \frac{\partial}{\partial a}+a_{y} \frac{\partial}{\partial a_{y}}+a_{y y} \frac{\partial}{\partial a_{y y}}-b_{x} \frac{\partial}{\partial b_{x}}-2 b_{x x} \frac{\partial}{\partial b_{x x}}-2 b_{x y} \frac{\partial}{\partial b_{x y}} \\
& \mathcal{V}_{\xi^{2}}=b \frac{\partial}{\partial b}-a_{y} \frac{\partial}{\partial a_{y}}-2 a_{x y} \frac{\partial}{\partial a_{x y}}-2 a_{y y} \partial_{a_{y y}}+b_{x} \frac{\partial}{\partial b_{x}}+b_{x x} \frac{\partial}{\partial b_{x x}} \\
& \mathcal{V}_{\xi^{\prime \prime}}=a \frac{\partial}{\partial a_{x}}+2 a_{y} \frac{\partial}{\partial a_{x y}}-b_{x} \frac{\partial}{\partial b_{x x}} \\
& \mathcal{V}_{\xi^{2 \prime \prime}}=-a_{y} \frac{\partial}{\partial a_{y y}}+b \frac{\partial}{\partial b_{y}}+2 b_{x} \frac{\partial}{\partial b_{x y}} .
\end{aligned}
$$

In this case we have

$$
\left[\mathcal{\xi}_{\xi^{\prime \prime}}, \mathcal{V}_{\xi^{\prime \prime \prime}}\right]=\mathcal{V}_{\xi^{1^{\prime \prime}}} \quad \text { and } \quad\left[\mathcal{V}_{\xi^{2 \prime}}, \mathcal{V}_{\xi^{2 \prime \prime}}\right]=\mathcal{V}_{\xi^{2^{\prime \prime}}}
$$

However, the span of $\left\{V_{\xi^{1 \prime}}, V_{\xi^{2}}, \mathcal{V}_{\xi^{1 \prime}}, \mathcal{V}_{\xi^{2 \prime}}\right\}$ does not contain the commutator $\left[\mathcal{V}_{\xi^{i(j)}}, \mathcal{V}_{\xi^{k(p)}}\right]$ for any sets $\{i, k\}$ and $\{j, p\}$ of distinct elements. For instance, we have

$$
\left[\mathcal{V}_{\xi^{(2)}}, \mathcal{V}_{\xi^{2(1)}}\right]=-2 a_{y} \frac{\partial}{\partial a_{x y}}
$$

We have a similar situation in the case of three independent variables. The operators $\mathcal{V}_{\xi^{(j)}}$ are given in this case by

$$
\begin{aligned}
& \mathcal{V}_{\xi^{\prime \prime}}=a \frac{\partial}{\partial a}+a_{y} \frac{\partial}{\partial a_{y}}+a_{z} \frac{\partial}{\partial a_{z}}+a_{y y} \frac{\partial}{\partial a_{y y}}+2 a_{y z} \frac{\partial}{\partial a_{y z}}+a_{z z} \frac{\partial}{\partial a_{z z}} \\
& -b_{x} \frac{\partial}{\partial b_{x}}-2 b_{x x} \frac{\partial}{\partial b_{x x}}-2 b_{x y} \frac{\partial}{\partial b_{x y}}-2 b_{x z} \frac{\partial}{\partial b_{x z}}-c_{x} \frac{\partial}{\partial c_{x}} \\
& -2 c_{x x} \frac{\partial}{\partial c_{x x}}-2 c_{x y} \frac{\partial}{\partial c_{x y}}-2 c_{x z} \frac{\partial}{\partial c_{x z}} \\
& \mathcal{V}_{\xi^{2}}=b \frac{\partial}{\partial b}-a_{y} \frac{\partial}{\partial a_{y}}-2 a_{x y} \frac{\partial}{\partial a_{x y}}-2 a_{y y} \frac{\partial}{\partial a_{y y}}-2 a_{y z} \frac{\partial}{\partial a_{y z}}+b_{x} \frac{\partial}{\partial b_{x}} \\
& +b_{z} \frac{\partial}{\partial b_{z}}+b_{x x} \frac{\partial}{\partial b_{x x}}+2 b_{x z} \frac{\partial}{\partial b_{x z}}+b_{z z} \frac{\partial}{\partial b_{z z}}-c_{y} \frac{\partial}{\partial c_{y}} \\
& -2 c_{x y} \frac{\partial}{\partial c_{x y}}-2 c_{y y} \frac{\partial}{\partial c_{y y}}-2 c_{y z} \frac{\partial}{\partial c_{y z}} \\
& \mathcal{V}_{\xi^{3}}=c \frac{\partial}{\partial c}-a_{z} \frac{\partial}{\partial a_{z}}-2 a_{x z} \frac{\partial}{\partial a_{x z}}-2 a_{y z} \frac{\partial}{\partial a_{y z}}-2 a_{z z} \frac{\partial}{\partial a_{z z}}-b_{z} \frac{\partial}{\partial b_{z}} \\
& -2 b_{x z} \frac{\partial}{\partial b_{x z}}-2 b_{y z} \frac{\partial}{\partial b_{y z}}-2 b_{z z} \frac{\partial}{\partial b_{z z}}+c_{x} \frac{\partial}{\partial c_{x}}+c_{y} \frac{\partial}{\partial c_{y}} \\
& +c_{x x} \frac{\partial}{\partial c_{x x}}+2 c_{x y} \frac{\partial}{\partial c_{x y}}+c_{y y} \frac{\partial}{\partial c_{y y}} \\
& \mathcal{V}_{\xi^{\prime \prime \prime}}=a \frac{\partial}{\partial a_{x}}+2 a_{y} \frac{\partial}{\partial a_{x y}}+2 a_{z} \frac{\partial}{\partial a_{x z}}-b_{x} \frac{\partial}{\partial b_{x x}}-c_{x} \frac{\partial}{\partial c_{x x}} \\
& \mathcal{V}_{\xi^{2 \prime \prime}}=-a_{y} \frac{\partial}{\partial a_{y y}}+b \frac{\partial}{\partial b_{y}}+2 b_{x} \frac{\partial}{\partial b_{x y}}+2 b_{z} \frac{\partial}{\partial b_{y z}}-c_{y} \frac{\partial}{\partial c_{y y}} \\
& \mathcal{V}_{\xi^{3 \prime \prime}}=-a_{z} \frac{\partial}{\partial a_{z z}}-b_{z} \frac{\partial}{\partial b_{z z}}+c \frac{\partial}{\partial c_{z}}+2 c_{x} \frac{\partial}{\partial c_{x z}}+2 c_{y} \frac{\partial}{\partial c_{y z}} \text {. }
\end{aligned}
$$

As in case $n=2$, we have $\left[\mathcal{V}_{\xi^{i \prime}}, \mathcal{V}_{\xi^{i \prime \prime}}\right]=\mathcal{V}_{\xi^{i \prime \prime}}$. That is, $\left\{\mathcal{V}_{\xi^{i \prime}}, \mathcal{V}_{\xi^{i \prime \prime}}\right\}$ spans a solvable Lie algebra with nilradical $\left\{\mathcal{V}_{\xi^{i \prime \prime}}\right\}$, for $i=1,2,3$. However, here again the span of $\left\{\mathcal{V}_{\xi^{i(j)}}\right\}_{i, j}$ does not contain the commutator $\left[\mathcal{E}_{\xi^{(j)}}, \mathcal{V}_{\xi^{k(p)}}\right]$ for any sets $\{i, k\}$ and $\{j, p\}$ of distinct elements. Indeed, we have for instance

$$
\left[\mathcal{V}_{\xi^{(2)}}, \mathcal{V}_{\xi^{3(1)}}\right]=2 c_{x} \frac{\partial}{\partial c_{x z}} .
$$

There is no guarantee in this case that the number of invariants attains its maximum which is $\mathcal{Q}-\tau$, with the usual notation. Moreover, they are much more difficult to find using the method of characteristic. We shall therefore attempt to determine the invariants of the second prolongation of G using the so-called method of total derivatives [4, 12].

Suppose that we are given a system of equations of the form (3.2a) where \mathcal{V}_{k} 's are arbitrary linear differential operators given as in (3.1) and depend on a total of \mathcal{Q} variables. Denote again by τ the rank of the coefficients matrix $\left(\xi^{k j}\right)_{k, j}$, and set $p=\mathcal{Q}-\tau$. Thus, we can solve
(3.2a) for τ of the variables $\partial_{x_{t}} F$ in terms of the remaining p others, and this gives rise to the Jacobian system

$$
\begin{equation*}
\Delta_{t} F \equiv \frac{\partial F}{\partial x_{t}}+\sum_{s=1}^{p} U_{s, t} \frac{\partial F}{\partial u_{s}}=0, \quad \text { for } \quad t=1, \ldots, \tau \tag{5.3}
\end{equation*}
$$

where we have renamed the remaining p variables $x_{\tau+j}$ as u_{j}, for $j=1, \ldots, p$ and where the $U_{s, t}$'s are functions depending in general on the \mathcal{Q} vriables x_{1}, \ldots, x_{τ} and u_{1}, \ldots, u_{p}. In this case, the equivalent adjoint system of total differential equations takes the form

$$
\begin{equation*}
\mathrm{d} u_{s}=\sum_{t=1}^{\tau} U_{s, t} \mathrm{~d} x_{t}, \quad \text { for } \quad s=1, \ldots, p . \tag{5.4}
\end{equation*}
$$

Equations (3.2a) and (5.4) are equivalent in the sense that they have the same integrals [4]. We denote by \mathcal{M}_{u} the coefficients matrix $\left\{U_{s, t}\right\}$ that completely determines the adjoint system (5.4).

For $n=2$, by permuting the coordinate system on M so as to have $\operatorname{diag}\{a, b, a, b\}$ as the submatrix corresponding to the first four columns of the coefficients matrix for the system $\mathcal{S}_{22}=\left\{V_{\xi^{11}}, V_{\xi^{2}}, \mathcal{V}_{\xi^{1 \prime}}, \mathcal{V}_{\xi^{2 \prime}}\right\}$, we obtain the transposed matrix $\mathcal{M}_{u}^{\mathrm{T}}$ of \mathcal{M}_{u} in the form

$$
\mathcal{M}_{u}^{\mathrm{T}}=\left(\begin{array}{cccccc}
0 & \frac{a_{y y}}{a} & -\frac{b_{x}}{a} & \frac{a_{y}}{a} & -\frac{2 b_{x x}}{a} & -\frac{2 b_{x y}}{a} \\
-\frac{2 a_{x y}}{b} & -\frac{2 a_{y y}}{b} & \frac{b_{x}}{b} & -\frac{a_{y}}{b} & \frac{b_{x x}}{b} & 0 \\
\frac{2 a_{y}}{a} & 0 & 0 & 0 & -\frac{b_{x}}{a} & 0 \\
0 & -\frac{a_{y}}{b} & 0 & 0 & 0 & \frac{2 b_{x}}{b}
\end{array}\right) .
$$

The corresponding system (5.4) of total differential equations can be solved using methods described in [4]. We get stuck with a problem of finding some integrating factors while trying to solve by the method of characteristics the equivalent system (3.2a) of linear partial differential equations for the system of operators \mathcal{S}_{22}. However, we readily get the following set of six functions by solving the corresponding adjoint system (5.4).

$$
\begin{array}{lll}
T_{12}=\frac{a_{y} b}{a}, & K_{12}=\frac{a_{y y} b}{a_{y}}+b_{y}, & J_{12}=\frac{a_{x y} a b}{a_{y}}-2 a_{x}, \\
T_{21}=\frac{b_{x} a}{b}, & K_{21}=\frac{b_{x x} a}{b_{x}}+a_{x}, & J_{21}=\frac{b_{x y} a b}{b_{x}}-2 b_{y} . \tag{5.5}
\end{array}
$$

Although their number corresponds to the maximal number of functionally independent invariants in this case, not all of them are actually invariants because the system \mathcal{S}_{22} is not complete. More precisely, only $T_{i j}$ and $K_{i j}$, for $i, j=1,2$, are invariants, and not only $J_{i j}$'s are not invariants, but also the equations $J_{i j}=0$ are not invariant equations.

Similarly for $n=3$, the total number \mathcal{Q} of variables defining the invariants is 27, and we have $\tau=6$. By permuting again the coordinate system on M, so as to have $\operatorname{diag}\{a, b, c, a, b, c\}$ as the first six columns of the coefficients matrix for the system of perators $\mathcal{S}_{32}=\left\{V_{\xi^{1}}, V_{\xi^{2}}, V_{\xi^{3}}, \mathcal{V}_{\xi^{1 \prime \prime}}, \mathcal{V}_{\xi^{2 \prime}}, \mathcal{V}_{\xi^{3 \prime \prime}}\right\}$, we obtain a more convenient representation
of the 21×6 matrix \mathcal{M}_{u}. The transpose \mathcal{M}_{u}^{T} of \mathcal{M}_{u} in which only its first six columns are represented has the form

$$
\mathcal{M}_{u}^{\mathrm{T}}=\left(\begin{array}{ccccccc}
0 & 0 & \frac{a_{y y}}{a} & \frac{2 a_{y z}}{a} & \frac{a_{z z}}{a} & -\frac{b_{x}}{a} & \ldots \\
-\frac{2 a_{x y}}{b} & 0 & -\frac{2 a_{y y}}{b} & -\frac{2 a_{y z}}{b} & 0 & \frac{b_{x}}{b} & \ldots \\
0 & -\frac{2 a_{x z}}{c} & 0 & -\frac{2 a_{y z}}{c} & -\frac{2 a_{z z}}{c} & 0 & \ldots \\
\frac{2 a_{y}}{a} & \frac{2 a_{z}}{a} & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & -\frac{a_{y}}{b} & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & -\frac{a_{z}}{c} & 0 & \ldots
\end{array}\right),
$$

where the dots represent the remaining 15 matrix columns. Solving the corresponding system (5.4) yields the expected maximal number of 21 functionally independent functions. But since here again the corresponding system of operators \mathcal{S}_{32} is not complete, only 15 of them are actually invariants of G. Reverting back to the original notation $A_{1}=a, A_{2}=b$ and $A_{3}=c$, and using (5.1b), these 15 invariants can be written in the form
$T_{i j}=\frac{A_{i j} A_{j}}{A_{i}}, \quad K_{i j}=\frac{A_{i j j} A_{j}}{A_{i j}}+A_{j j}, \quad \quad L_{i j k}=A_{i j k}\left(\frac{A_{j} A_{k}}{A_{i}}\right)$,
where $i, j \in\{1,2,3\}$, with $i \neq j$, and where $\{j, k\}=\{1,2,3\} \backslash\{i\}$ for $i=1,2,3$. We have thus obtained the following result.

Theorem 6. Let \mathcal{N} be the maximal number of functionally independent invariants of the second prolongation of the group of equivalence transformations of (1.2) in n independent variables.
(a) For $n=2, \mathcal{N}=4$, and the invariants are the function $T_{i j}$ and $K_{i j}$ of (5.5).
(b) For $n=3, \mathcal{N}=15$, and the invariants are the functions $T_{i j}, K_{i j}$ and $L_{i j k}$ given by (5.6).

Contrary to the case of the first prolongation of G, a determination of all invariants of the second prolongation for larger values of n using only invariants of a lower order of n and a symmetry argument does not seem to be obvious. Indeed, equations (5.5) and (5.6) show that for $n=3$, the invariants of types $T_{i j}$ and $K_{i j}$ can be simply derived by symmetry from those for $n=2$ without any further calculations. However, the invariants of type $L_{i j k}$ in (5.6) cannot be obtained from (5.5) using only a symmetry argument. This makes it more difficult to find all the invariants for the second prolongation of G when $n \geqslant 4$. Nevertheless, we do have the following result which is solely based on a symmetry argument.

Theorem 7. For $n \geqslant 3$, a fundamental set of invariants of the second prolongation of G includes all the invariants of types $T_{i j}, K_{i j}$ and $L_{i j k}$ of (5.6), whose total number is $n\left(n^{2}+n-2\right) / 2$.

Indeed, this result clearly follows from (5.6) and the symmetry inherent in (1.2), by noting that the total number of the $T_{i j}, K_{i j}$ and $L_{i j k}$ for $n \geqslant 3$ is

$$
\begin{equation*}
2\binom{n}{2}+2\binom{n}{2}+3\binom{n}{3}=\frac{1}{2} n\left(n^{2}+n-2\right) \tag{5.7}
\end{equation*}
$$

Although we may not find all the invariants of the second prolongation of G for larger values of $n>3$ using only symmetry arguments, it should be possible to predict their number. Denote by $M_{k}^{n, j}$ the number of fundamental invariants of the k th prolongation of equation (1.2) (with n independent variables) involving terms of the form A_{I}, where I is an index of the form $i_{1} i_{2} \ldots i_{j}$ with distinct $i_{k} \in\{1, \ldots, n\}$ for $k=1, \ldots, j$. Note that the corresponding type
of functions appears for the first time as invariants of (1.2) when the number of independent variables is j, where $2 \leqslant j \leqslant n$. If we also denote by M_{k}^{n} the number of invariants of the k th prolongation for n variables, then a closer look at equation (5.6) suggests that $A_{2}^{n, j}=j\binom{n}{j}$ and $M_{2}^{n}=M_{1}^{n}+W_{n}$, where

$$
W_{n}=A_{2}^{n, 2}+A_{2}^{n, 3}+\ldots+A_{2}^{n, n}=\sum_{j=2}^{n} j\binom{n}{j} .
$$

Using the properties of binomial coefficients, it can be shown that $\sum_{2}^{n} j\binom{n}{j}$ equals $n\left(2^{n-1}-1\right)$. Since by theorem 3 we have $M_{1}^{n}=n(n-1)$, our conjecture follows.

Conjecture. For any value n of independent variables in equation (1.2), the number M_{2}^{n} of functionally independent invariants of the second prolongation of G is $n\left(2^{n-1}+n-2\right)$.

This conjecture says that $M_{2}^{4}=40$ and $M_{2}^{5}=95$. By a result of Lie (see [7]), it is possible to find differential invariants of G of higher order than 2 using invariant differentiation, but we will not discuss that here.

6. Properties of the invariants

It follows from theorem 1 that every element of the equivalence transformation group G of equation (1.2) can be represented by an invertible map ϕ of the form

$$
\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}: X=\left(x^{1}, \ldots, x^{n}\right) \mapsto Y=\phi(X) \equiv\left(\phi^{1}\left(x^{1}\right), \ldots, \phi^{n}\left(x^{n}\right)\right)
$$

That is, the i th component of ϕ depends only on the single variable x^{i}. In a given coordinate system $X=\left(x^{1}, \ldots, x^{n}\right)$, each equation of the form (1.2) can be represented by the n-tuple $\left(A_{i}(X)\right)_{i=1}^{n}$ or just $\left(A_{i}(X)\right)$. It follows from equation (2.4) that under the action of $\phi \in G$, the differential equation $\left(A_{i}(X)\right)$ is mapped to the differential equation $\left(B_{i}(Y)\right)=\phi \cdot\left(A_{i}(X)\right)$, where

$$
B_{i}(Y)=A_{i}\left(\phi^{-1}(Y)\right) \phi^{i \prime}\left(\psi^{i}(Y)\right)=\frac{A_{i}(\psi(Y))}{\psi^{i \prime}\left(y^{i}\right)}
$$

and where $\psi=\phi^{-1}$. If θ is any other element of G, and Id is the identity transformation, it is easily seen that
$\operatorname{Id} \cdot\left(A_{i}(X)\right)=\left(A_{i}(X)\right), \quad$ and $\quad \theta \cdot\left(\phi \cdot\left(A_{i}(X)\right)\right)=\theta \circ \phi \cdot\left(A_{i}(X)\right)$.
Thus if we denote by E_{n} the variety of all differential equations of the form (1.2), then (6.1) shows that the action of G on M induces another group action of G on E_{n}. This yields a partition of E_{n} into orbits which can be described by the original action of G on M. For a given element $\left(A_{i}(X)\right)$ in E_{n}, we set

$$
T_{i j}^{A}=A_{i j} A_{j} / A_{i}
$$

Theorem 8. Suppose that the coefficients A_{i}, for $n=1, \ldots, n$ in equation (1.2) are nonvanishing and that exactly p of the functions $A_{i j}$ in the expression of the generators $\mathcal{V}_{\xi^{\prime \prime}}$ of the first prolongation of G in (4.3) vanish identically. Then the two differential equations $\left(A_{i}(X)\right)$ and $\left(B_{i}(X)\right)$ are equivalent, i.e. they belong to the same orbit of the first prolongation of G if and only if

$$
T_{i j}^{A}(X)=T_{i j}^{B}(X)
$$

for all of the $n(n-1)-p$ nonzero such functions $T_{i j}^{A}$ and $T_{i j}^{B}$.

Proof. If the coefficients A_{i} of (1.2) are non-vanishing, then $\operatorname{diag}\left\{A_{1}, \ldots, A_{n}\right\}$ has constant rank n, and by the expression of the generators in (4.3), G acts semi-regularly. Moreover, the expression of the corresponding invariant functions in (4.5) shows that this action is regular. Since the invariants of G are actually the invariants of the induced group action of G on E_{n}, the result follows from a theorem (of [13, theorem 2.34]) stating that for regular group actions, two points lie in the same orbit if and only if they take on the same values under all invariant functions.

Example 1. Consider the equation $u_{t}=u_{x x}$ for the conduction of heat in a one-dimensional rod, and Burger's equation $w_{t}=w_{x x}+w_{x}^{2}$, which is considered as the simplest wave equation combining both dissipative and nonlinear effects [13]. It is well known that these two equations are equivalent under a change of variable. If we had to find such a transformation, theorem 8 could be used. Indeed, these two equations have each a six-parameter symmetry algebra, in addition to symmetries defined by arbitrary functions. Two of these symmetries are V_{A} for the heat equation and V_{B} for Burger's equation, where
$V_{A}=4 t x \partial_{x}+4 t^{2} \partial_{t}-\left(x^{2}+2 t\right) u \partial_{u} \quad$ and $\quad V_{B}=4 t x \partial_{x}+4 t^{2} \partial_{t}-\left(x^{2}+2 t\right) \partial_{w}$.
In this case $n=3$, and all the assumptions of theorem 8 hold. The six functions $T_{i j}^{A}$ for V_{A} and $T_{i j}^{B}$ for V_{B} can be computed in a matrix form $\left(T_{i j}\right)_{i, j}$ and this matrix is given for both V_{A} and V_{B} by

$$
\left(\begin{array}{ccc}
* & 4 t & 0 \\
0 & * & 0 \\
\left(8 t x^{2}\right) /\left(2 t+x^{2}\right) & \left.8 t x^{2}\right) /\left(2 t+x^{2}\right) & *
\end{array}\right),
$$

where the stars $\left({ }^{*}\right)$ stand for the undefined quantities $T_{j j}$. This shows that V_{A} and V_{B} belong to the same orbit of the equivalence group. The corresponding transformation can be found systematically using (2.2), by solving at most an ordinary differential equation, instead of a partial differential equation in three variables as that would have been the case without knowledge of the equivalence group. It is readily found that the transformation $w=e^{u}$ maps V_{B} to V_{A} and also maps Burger's equation to the heat equation. Although this transformation is well known, this simple example shows how the theorem could be applied in more complex cases.

Example 2. Another application of theorem 8 shows that equations of the form $\left(A_{i}(X)\right)$, where $A_{i}(X)=A_{i}\left(x^{i}\right)$ depends on x^{i} alone are all trivially equivalent. Indeed, a transformation of the form $x^{i}=\alpha^{i}\left(y^{i}\right)$, where $\alpha^{i}\left(y^{i}\right)$ satisfies the ordinary differential equation

$$
\frac{d \alpha^{i}\left(y^{i}\right)}{d y^{i}}=\frac{A_{i}\left(\alpha^{i}\left(y^{i}\right)\right)}{B_{i}\left(y^{i}\right)}
$$

will map the equation $\left(B_{i}(Y)\right)$ to $\left(A_{i}(X)\right)$. Equations of this family also have no nontrivial invariants of any order.

7. Concluding remarks

One of the functions of equivalence groups is to provide more specific and much simpler transformations through which elements of a given family of equations or functions can be mapped to each other. In this regard, some of the analyses carried out in this paper show that to map equations of the form (1.2) to each other, one only needs to use simple transformations of the form (2.2) in which each involves only a single independent variable. In particular,
one would need to solve at most an independent system of ordinary differential equations to find them, instead of solving complicated coupled systems of partial differential equations in the absence of the equivalence group. We have also seen that the problem of classification of equations of the form (1.2) reduces to the classification of the vector fields which are naturally associated with each of them.

References

[1] Gell-Mann M 1962 Phys. Rev. 1251067
[2] Engelfield M J 1972 Group Theory and the Coulomb Problem (New York: Wiley)
[3] Wigner E P 1939 Ann. Math. 40149
[4] Forsyth A R 1890 Theory of Differential Equations: Part 1 (New York: Dover)
[5] Lie S 1895 Zur allegemeinnen theorie der partiellen differentialgleichungen beliebigerordnung Leipziger Berichte 153-128
Lie S 1929 Gesammelte Abhandlundgen vol 4 paper IX (reprinted)
[6] Ibragimov N H 1997 Infinitesimal method in the theory of invariants of algebraic and differential equations Not. South Afr. Math. Soc. 29 61-70
[7] Ibragimov N Kh 2004 Invariants of hyperbolic equations: Solution of the Laplace problem J. Appl. Mech. Tech. Phys. 45 126-45
[8] Ibragimov N H 2002 Invariants of a remarkable family of nonlinear equations Nonlinear Dyn. 30 155-66
[9] Johnpillai I K, Mahomed F M and Wafo Soh C 2002 Basis of joint invariants for $(1+1)$ linear hyperbolic equations J. Nonlinear Math. Phys. 9 49-59
[10] Ovsyannikov L V 1978 Group Analysis of Differential Equations (Moscow: Nauka)
[11] Melshko S V 1996 Generalization of the equivalence transformations Nonlinear Math. Phys. 3 170-4
[12] Ndogmo J C 2004 Invariants of a semi-direct sum of Lie algebras J. Phys. A: Math. Gen. 37 5635-47
[13] Olver P J 1995 Equivalence, Invariants, and Symmetry (Cambridge: Cambridge University Press)

